COMPARAISON ENTRE EN 13445 ET LE CODAP 2000

COMPARISON BETWEEN EN 13445 AND THE FRENCH CODAP CODE

D.Koplewicz – UNM A.Bonnefoy – SNCT G.Perraudin – SNCT Y. Simonet – CETIM M.Médiouni – CETIM

RESUME

La norme européenne EN 13445 "Récipients sous pression non soumis à la flamme" est disponible depuis mai 2002. Elle concrétise le consensus européen dans ce domaine et donne présomption de conformité à la directive 97/23/CE "Equipement sous pression". Pour faciliter son utilisation industrielle, et identifier ses points forts et ses points faibles, une comparaison des dispositions prévues par cette norme et des pratiques françaises codifiées dans le CODAP 2000 a été initiée. L'article présente les premiers résultats de cette étude, conduite par l'UNM et le SNCT en collaboration avec le CETIM, qui porte essentiellement sur le dimensionnement et les contrôles requis pour six appareils.

Les appareils retenus, représentatifs des fabrications actuelles des entreprises sont les suivants :

- Appareil horizontal sur berceaux
- Appareil vertical sur consoles
- Colonne sur jupe
- Echangeur type AES
- Echangeur type BEM
- Réacteur vertical sur jupe

ABSTRACT

The European standard EN 13445 "Unfired pressure vessels" is available since May 2002. It represents the European consensus in this field and gives presumption of conformity to the directive 97/23/CE "Pressure equipment". To facilitate its use by industry, and to identify its strong points as well as its weak points, a comparison of the provisions given by this standard and the French practices as codified by CODAP 2000 was initiated. This paper gives the first results of the study, conducted by UNM and SNCT, with the collaboration of CETIM. It mainly covers the design and testing required for 6 different vessels.

The vessels, representative of current manufactured items, are the following:

- Horizontal vessel on saddle supports
- Vertical vessel on bracket supports
- Column with skirt
- Exchanger type AES
- Exchanger type BEM
- Vertical reactor with skirt

INTRODUCTION

Les principes de la nouvelle approche, fixés par la résolution du Conseil de l'Union européenne en 1985, ont défini une nouvelle stratégie en matière de réglementation et d'harmonisation technique : l'harmonisation législative est limitée à l'adoption des exigences essentielles auxquelles doivent satisfaire les produits mis sur le marché communautaire pour bénéficier de la libre circulation dans la Communauté; les spécifications techniques des produits correspondant aux exigences essentielles fixées par les directives sont énoncées dans des normes harmonisées; l'application des normes harmonisées ou d'autres normes est laissée à la discrétion du fabricant qui garde la possibilité de choisir d'autres spécifications techniques pour satisfaire aux exigences;

C'est dans ce contexte de la nouvelle approche que les travaux de normalisation européens sur les récipients sous pression ont débuté au début des années 1990, en réponse à un demande de la Commission européenne : il s'agissait de développer des normes européennes harmonisées en appui à la directive 97/23/CE « Equipements sous pression », à l'époque au stade de projet.

Confronter les cultures techniques européennes assez (voire radicalement) différentes et profondément ancrées dans chacun des pays depuis plus d'un siècle en accompagnement des réglementations nationales sur les chaudières à vapeur et appareils à pression ; trouver des solutions consensuelles qui concilient à la fois les pratiques éprouvées et les innovations techniques les plus récentes, tout en garantissant un niveau de sécurité équivalent ; tel est le challenge relevé par la communauté européenne des appareils à pression, qui a engagé une centaine d'experts européens dans ce travail (experts représentant les différentes partie prenantes : fabricants, utilisateurs, organismes d'inspection, et de contrôle, pouvoirs publics). Leur action, conduite avec conviction et compétence, s'est concrétisée par l'adoption fin mai 2002 de la norme européenne EN 13445 « Récipients sous pression non soumis à la flamme ».

Mais l'adoption de la norme ne représente que la première étape dans le lent processus d'harmonisation et de construction économique européenne. Certes, cette norme européenne constitue le mode de preuve privilégié à la réglementation européenne ... mais il lui faut surmonter plusieurs handicaps : sa nouveauté (il s'agit d'un texte de 1400 pages, qui nécessite une lecture approfondie pour en appréhender les conventions, les avantages et les limites), sa jeunesse (la première version d'une norme de cette ampleur comporte fatalement des imperfections et des erreurs) et le manque de retour d'expérience (peut-on lui faire confiance ?).

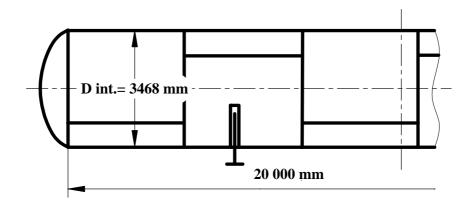
Diverses actions ont donc été engagées, notamment en France, pour accompagner la norme dans ses premières applications et faciliter son appropriation par l'industrie.

Ainsi, pour assurer une bonne réactivité aux questions que le lecteur de la norme n'allait pas manquer de se poser, et assurer une correction quasi-immédiate des erreurs constatées, la France a proposé de mettre en œuvre une procédure particulière au-travers d'un "bureau d'aide"; guichet unique pour l'Europe, il donne des réponses « autorisées », validées par un pannel d'experts impliqués dans la rédaction du texte. Ce bureau d'aide est animé par l'Union de Normalisation de la Mécanique, et est accessible à l'adresse suivante : www.unm.fr.

La correction des erreurs et l'éclaircissement des points jugés obscurs permettent progressivement d'améliorer l'EN 13445 et d'asseoir sa crédibilité. Toutefois, il s'agit de corrections au cas par cas, sans vision globale de l'applicabilité de la norme aux récipients les plus communément rencontrés. C'est pourquoi, un deuxième type d'actions a été mis en œuvre, qui consiste à comparer, pour six appareils, les réponses de l'EN 13445 d'une part, et du CODAP 2000, d'autre part, c'est-à-dire de confronter la norme au texte qui codifie les pratiques françaises.

Cette action, pilotée par l'UNM a été réalisée par le SNCT et le CETIM. Elle a reçu le soutien du Ministère chargé de l'Industrie.

Les appareils retenus, représentatifs des fabrications actuelles des entreprises sont les suivants :


- Appareil horizontal sur berceaux
- Appareil vertical sur consoles
- Colonne sur jupe
- Echangeur type AES
- Echangeur type BEM
- Réacteur vertical sur jupe

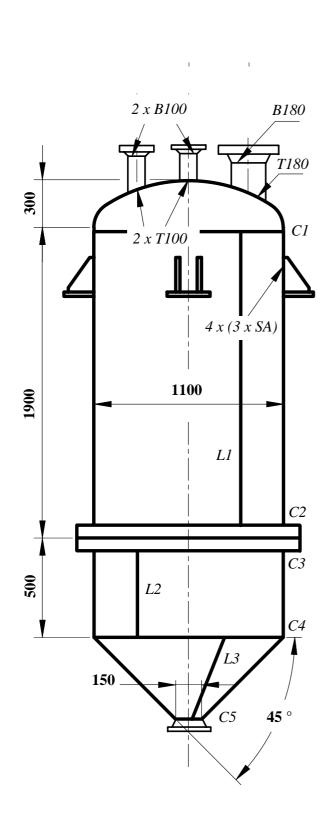
Dans cette pemière comparaison aucun des appareils n'est soumis à la fatigue.

Cette comparaison s'est délibérément située dans une approche industrielle : les six récipients choisis sont des récipients effectivement fabriqués, et non des constructions purement théoriques ; le but n'était pas de rechercher les avancées techniques de la norme européenne, ou les éventuels gains qu'elle peut amener à la marge, mais bel et bien de s'assurer qu'elle permet de fabriquer des appareils et que les résultats obtenus sont industriellement acceptables ; les retombées attendues étaient aussi de vérifier que la rédaction de la norme est compréhensible, et d'identifier les points sur lesquels elle peut être améliorée (voire révisée) ; enfin la comparaison, au-delà des aspects techniques, doit aussi aborder l'aspect économique.

Cette comparaison, dont le détail est développé plus loin, a pris en compte les parties *Calcul* (sans retenir l'analyse limite) et *Contrôle*.

RESERVOIR HORIZONTAL SUR DEUX BERCEAUX

Données générales						
Matériau	Appareil P295GH NF EN 10028-2					
	Supports S275JR NF EN 10025					
Fluide de service	Liquide Groupe 1 densité 0,54					
Pression intérieure	44,10 bar					
Température	50,00°C					
Catégorie de risque	II					
Coefficient de joint	0,85					
Surépaisseur de corrosion (mm)	1 (ext.)					


CODAP	
Catégorie de construction	В
Groupe de matériau	St.1.2

EN13445	
Groupe de matériau	1.2
Groupe de contrôle	3b

Contrainte nominale MPa		Coef.	_	sseurs AP mm	Épaisseurs EN13445 mm		
Element	MIN($R_{p0,2}^t/1.5$; $R_m/2.40$)	soudure	calcul	commande	calcul	commande	
Virole cyl.	191,67	0,85	18,11	18,20	18,11	18,20	
Fonds elliptiques	191,67	sans	15,61	16,00	15,61	16,00	

C 1	CODAP			EN13445				
Soudures	e mm	Type % / Nb		e mm	Туре	% / Nb		
Contrôles volumiques : radiographie (RT) ou ultrasons (UT)								
Longitudinales	18,2	1.1	10%	18,2	1	0%		
Circulaires	18,2	1.2.1	10%	18,2	2a	0%		
Nœuds	18,2		100%	18,2				
Contrôles surfaciques : magnétoscopie (MT) ou ressuage (PT)								
Longitudinales	18,2	1.1	10%	18,2	1	0%		
Circulaires	18,2	1.2.1	10%	18,2	2a	0%		

APPAREIL VERTICAL SUR CONSOLES

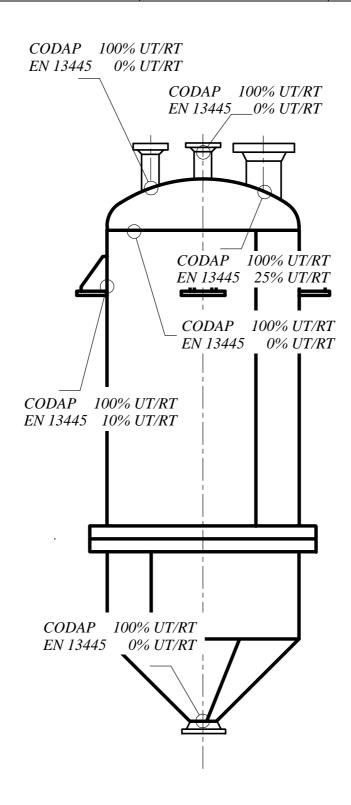
Données générales						
Matériau	P265GH NF EN 10028-2					
Fluide de service	Gaz Groupe 1 Densité 0,48					
Pression intérieure	18 bar / 0,5 bar					
Température	20°C / 260°C					
Catégorie de risque	П					
Coefficient de joint	1					
Surépaisseur de corrosion (mm)	1 (ext)					

CODAP					
Catégorie de construction	В				
Groupe de matériau	St.1.2				

EN13445	
Groupe de matériau	1.1
Groupe de contrôle	2b

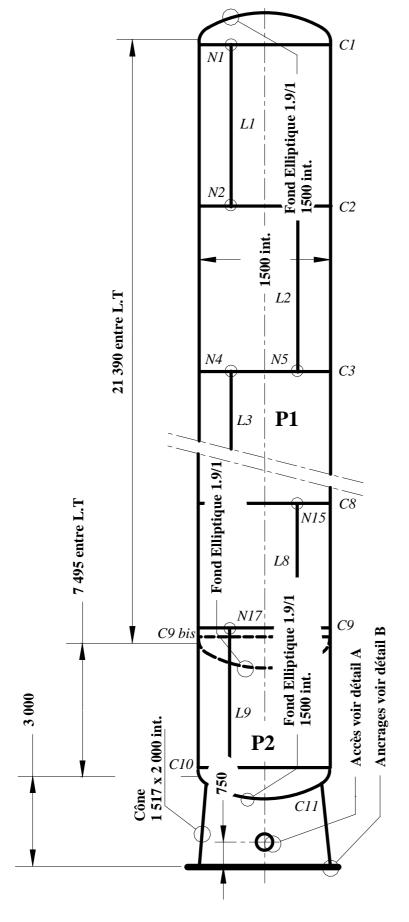
Élément	Contrainte nominale MPa		Coef.	_	sseurs AP mm	Épaisseurs EN13445 mm		
Element	R ^t _{p0,2} /1.5	R _m /2.40	soudure	calcul	commande	calcul	commande	
Virole conique	114.	170.83	1.	12.52	14.0	11.75	13.0	
Virole cyl. bas	114.	170.83	1.	12.17	14.0	11.75	13.0	
Virole cyl. haut	114.	170.83	1.	8.85	11.0	8.85	11.0	
Fond elliptique	114.	170.83		8.35	10.0	8.33	10.0	

Élément	Joint	COI	DAP	EN13445		
Element	Joint	boulons	plateau	boulons	plateau	
	m:4.5 / y:10.MPa	NF EN 20-273		NF EN 20-273		
Bride largeur : 25 mm		d: 48 mm	e=124 mm	d: 48 mm	e=124 mm	
	e : 2 mm	nombre: 12		nombre: 12		


Le dimensionnement pour les deux codes est similaire avec toutefois des valeurs plus favorables pour l'EN 13445 compte tenu des formules de calcul différentes pour la liaison Cylindre / Grande base du cône.

Contrôle de l'appareil

	L		CODAP					EN1	3445	
Soudure	mm	Rep.	e mm	Type	% / Nb	L mm	e mm	Туре	% / Nb	L mm
	Contrôles volumiques : radiographie (RT) ou ultrasons (UT)									
Longi.	3072	L1 à L3	11	1.1	100%	3072	11	1	100%	3072
Cir.dome	3456	C1	11/10	1.2.1	100%	3456	11/10	2a	25%	864
Cir.bride	6912	C2 + C3	11/14	6.2.1	100%	6912	11/13	9	100%	6912
Cir.cône	3456	C4	14	2.1.2	100%	3456	13	7	100%	3456
Cir.bride-C	471	C5	14	2.2.2	100%	471	13	4	0%	0
Soud. angle	11840	SA	10	8.1.3	100%	11840	11	21	10%	1184
Tubes 100	628	T100		4.2.1	100%	628		16	0%	0
Tube 180	566	T180		4.2.1	100%	566		15	25%	142
Brides T100	628	B100		6.2.1	100%	628		14	0%	0
Bride T180	566	B180		6.2.1	100%	566		12	100%	566
Nœuds	4	N1 à N4				800			-4(a)	0
	Contr	rôles surf	aciques	: magn	étoscopi	ie (MT)	ou ress	uage (P'	Γ)	
Longi.	3072	L1 à L3	11	1.1	100%	3072	11	1	0%	0
Cir.dome	3456	C1	11/10	1.2.1	100%	3456	11/10	2a	0%	0
Cir.bride	6912	C2 + C3	11/14	6.2.1	100%	6912	11/13	9	0%	0
Cir.cône	3456	C4	14	2.1.2	100%	3456	13	7	0%	0
Cir.bride-C	471	C5	14	2.2.2	100%	471	13	4	10%	47
Soud. angle	11840	SA	10	8.1.3	0%	0	11	21	10%	1184
Tubes 100	628	T100		4.2.1	100%	628		16	10%	63
Tube 180	566	T180		4.2.1	100%	566		15	0%	0
Brides T100	628	B100		6.2.1	100%	628		14	0%	0
Bride T180	566	B180		6.2.1	100%	566		12	0%	0


(a): % couverts par les nœuds

Longueurs de soudure soumises aux contrôles							
Type de contrôle CODAP EN 13445							
Contrôles surfaciques (MT/PT)	19 755 mm	1 403 mm					
Contrôles volumiques (UT/RT) 32 395 mm 16 195 mm							

Principales différences concernant les contrôles volumiques

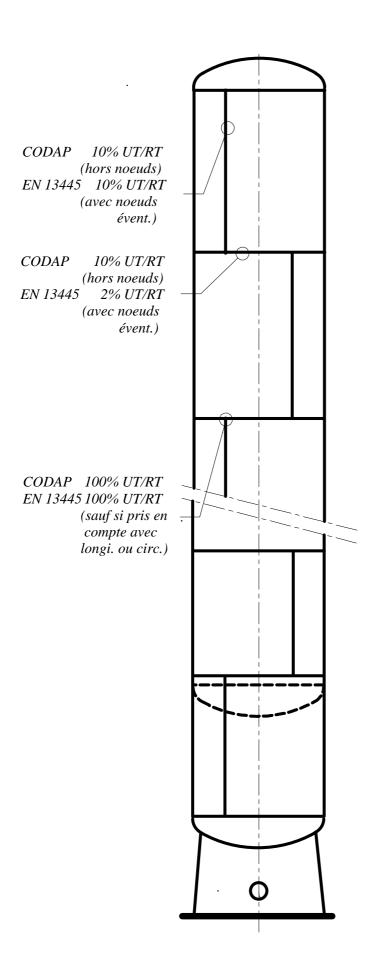
COLONNE SUR JUPE

Données généra	les
Matériaux	P295GH NF EN 10028-2 Support P265GH
Fluide de service	Gaz Groupe 1 densité 0,48
Pression intérieure de calcul – P1	44,10 bar
Température de calcul – P1 (°C)	-20,00°C à +100,00°C
Pression intérieure de calcul – P2	44,50 bar
Pression extérieure de calcul – P2	0,50 bar
Température de calcul – P2 (°C)	-20,00°C à +100,00°C
Catégorie de risque	IV
Coefficient de joint	0,85
Surépaisseur de corrosion (mm)	1 (ext.)

CODAP	
Catégorie de construction	В
Groupe de matériau	St.1.2

EN13445	
Groupe de matériau	1.2
Groupe de contrôle	3b

Élément		e nominale Pa	ominale Coef.		sseurs AP mm	Épaisseurs EN13445 mm		
Element	R ^t _{p0,2} /1.5	R _m /2.40	Soudure	calcul	commande	calcul	commande	
Jupe (a)	143.33					10	22.00	
Fond ellip. bas	166.67	191.67		20.30	22.00	20.30	22.00	
Virole bas	166.67	191.67	0.85	23.94	25.00	23.93	25.00	
Fond intermédiaire	166.67	191.67		53.11	56.00 (b)	46.00	48.00 (b)	
Virole haut	166.67	191.67	0.85	23.72	25.00	23.72	25.00	
Fond ellip. haut	166.67	191.67		20.11	22.00	20.11	22.00	

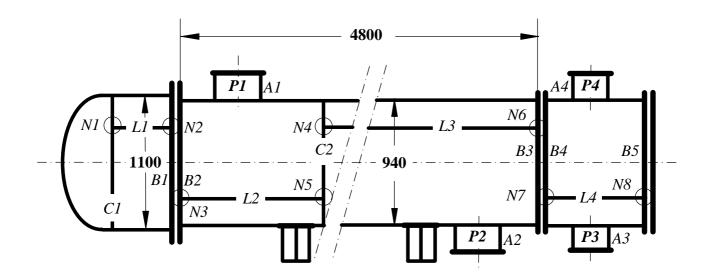

Les appareils dimensionnés selon le CODAP ou l'EN13445 sont très semblables, cela provient du fait que les formules analytiques utilisées pour calculer les épaisseurs des éléments qui les composent sont identiques. Les origines des petites différences qui apparaissent sont explicitées ci dessous :

- (a): Le CODAP ne possède pas de règle de dimensionnement des jupes de supportage
- (b): La différence vient du fait que le CODAP impose de dimensionner un fond en pression extérieure en effectuant un calcul avec une pression intérieure égale à 1.2 fois la pression extérieure alors que l'EN13445 impose de dimensionner le fond avec une pression intérieure égale à la pression extérieure.

Contrôle de l'appareil

				CODAP				EN1	3445	
Soudure	L mm	Rep.	e mm	Type	% ou Nb.	L mm	e mm	Туре	% ou Nb	L mm
	Contrôles volumiques : radio (RT) ou ultrasons (UT)									
Longi.	28590	L1 à L9	25	1.1	10%	2859	25	1	10%	2859
Cir.	34042	C2 à C8	25	1.2.1	10%	3404	25	2a	2%	0 (d)
C. fond	9726	C1 + C10	22	1.2.1	10%	973	22	5	10%	973
C. double	4863	C9	25	1.2.1	10%	486	25	2a	2%	0 (d)
C. double	4863	C9bis	56	3.2.1	10%	486	48	5	10%	973
Nœuds	18	N1 à N18				3600			-3(c)	3000
	Contrôles surfaciques : magnétoscopie (MT) ou ressuage (PT)									
Longi.	28590	L1 à L9	25	1.1	10%	2859	25	1	0%	0
Cir.	34042	C2 à C8	25	1.2.1	10%	3404	25	2a	0%	0
C. fond	9726	C1 + C10	22	1.2.1	10%	973	22	5	0%	0
C. double	4863	C9	25	1.2.1	Nd+10%	486	25	2a	0%	0
C. double	4863	C9bis	56	3.2.1	10%	486	48	5	10%	973

(c): Nœuds couverts par le %(d): % couverts par les nœuds



Longueurs de soudure soumises aux contrôles					
Contrôles surfaciques (MT/PT)					
CODAP	8 208 mm				
EN 13445	972 mm				
Contrôles volumiques (UT/RT)					
CODAP	11 808 mm				
EN 13445	7 804 mm				

Principales différences concernant les contrôles volumiques

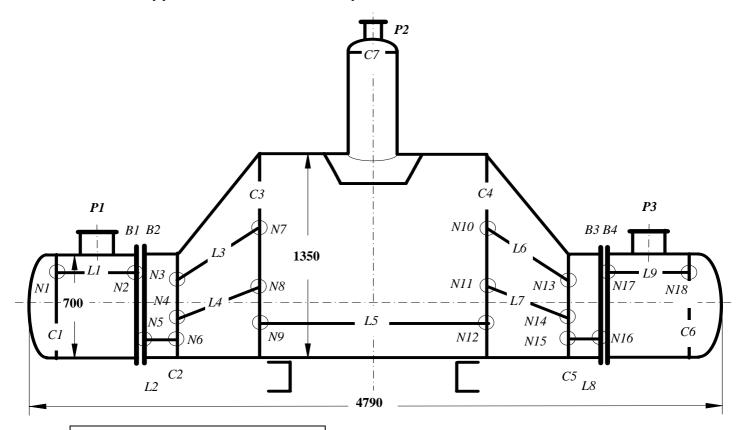
ECHANGEUR AES

Schéma de l'appareil et données techniques de construction

Données générales					
Matériau	P295GH NF EN 10028-2				
Fluides de service	Calandre Gaz Groupe 1 Tubes Liquide Groupe 2				
Pression intérieure	Calandre 2,20 bar Tubes 0,5 bar				
Température	135°C				
Catégorie de risque	IV				
Coefficient de joint	0,85				

CODAP	
Catégorie de construction	В
Groupe de matériau	St.1.1

EN13445	
Groupe de matériau	1.1
Groupe de contrôle	3b
Epaisseur calculée des soudures déterminantes	15 mm


Note : Le dimensionnement des appareils n'est pas présenté ici dans la mesure où les règles de calculs sont similaires dans le CODAP 2000 et la Norme Européenne.

Soudure				COI	DAP			EN13	445	
	L mm	Rep.	e mm	Туре	% ou Nb.	L mm	e mm	Туре	% ou Nb	L mm
	Co	ontrôles vo	olumiq	ues : rad	io (RT)	ou ultra	asons (U	U T)		
Longi.	5900	L1 à L4	15	1.1	10%	590	15	1	10%	590
Cir.	5903	C1 à C2	15	1.2.1	10%	590	15	2a	0%	0
Cir. Viroles / Brides	15314	B1 à B5	15	6.1	10%	1531	15	2a	10%	153
Piquages	3800	P1 à P4	20	4.2.1a	10%	380	20	3b	25%	950
Brides / Tubes > 80	3800	A1 à A4	12,5	6.1	10%	380	12,5	12	10%	427
Brides / Tubes < 80	471	A5 à A7	12,5	6.1	0%	0	12,5	12	1070	421
Nœuds	8	N1 à N8								
	Contrô	òles surfac	iques :	magnéto	oscopie	(MT) ou	ı ressua	age (PT)		
Longi.	5900	L1 à L4	15	1.1	0%	0	15	1	0%	0
Cir.	5903	C1 à C2	15	1.2.1	0%	0	15	2a	0%	0
Cir. Viroles / Brides	15314	B1 à B5	15	6.1	0%	0	15	2a	0%	0
Piquages	3800	P1 à P4	20	4.2.1a	0%	0	20	3b	10%	380
Brides / Tubes > 80	3800	A1 à A4	12,5	6.1	0%	0	12.5	12	00/	
Brides / Tubes < 80	471	A5 à A7	12,5	6.1	10%	47	12,5 12	0%	0	

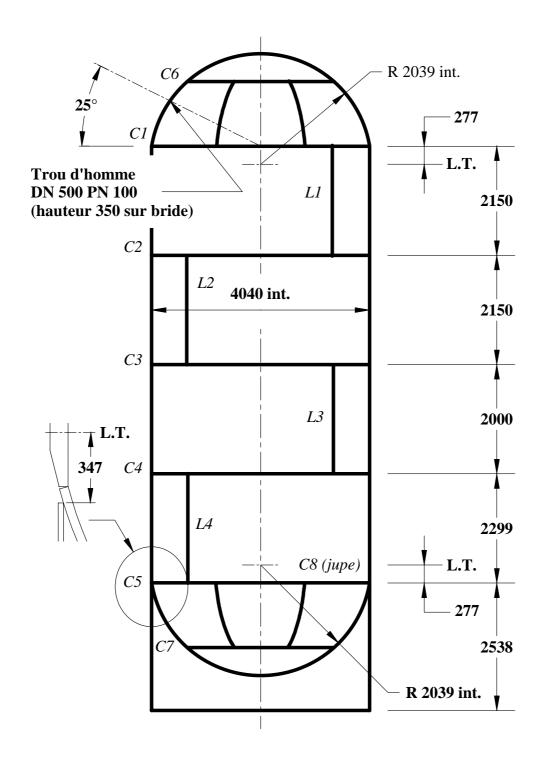
Longueurs de soudure soumises aux contrôles					
Type de contrôle CODAP EN 13445					
Contrôles surfaciques (MT/PT)	47 mm	380 mm			
Contrôles volumiques (UT/RT)	3 471 mm	2 120 mm			

ECHANGEUR BEM

Schéma de l'appareil et données techniques de construction

Données générales				
Matériau	P295GH NF EN 10028-2			
	P265GH NF EN 10028-2			
Fluides de service	Calandre Gaz Groupe 1 Tubes Gaz Groupe 1			
Pression intérieure	Calandre 2,40 bar & Vide Tubes 0,4 bar			
Température	Calandre - 25°C Tubes -25°C à 80°C			
Catégorie de risque	IV			
Coefficient de joint	1			

CODAP	
Catégorie de construction CODAP	В
Groupe de matériau CODAP	St.1 & St.2


EN13445	
Groupes de matériau	1.1 & 1.2
Groupe de contrôle	1b
Epaisseur calculée des soudures déterminantes	8 à 30 mm

Note : Le dimensionnement des appareils n'est pas présenté ici dans la mesure où les règles de calculs sont similaires dans le CODAP 2000 et la Norme Européenne.

				CO	DAP			EN13445				
Soudure	L mm	Rep.	e mm	Type	% ou Nb.	L mm	e mm	Type	% ou Nb	L mm		
	Contrôles volumiques : radio (RT) ou ultrasons (UT)											
Longi.	6000	L1 à L9	30	1.1	100%	6000	30	1	100%	6000		
Cir.	10930	C1 à C7	10	1.2 2.12 2.22	100%	10930	10	2a	100%	10930		
Cir. Viroles / Brides	4050	B1 à B4	8	1.2	100%	4050	8	2a	10%	4050		
Piquages	1821	P1 à P3	12,7	6.1 4.1.1 4.2.1 a 4.2.1b	2 x 100% 1 x 10%	1625	12,7	15	2 x 25% 1 x 0%	400		
Brides / Tubulures	1709	A1 à A10	5,54	6.1	100%	1709	5,54	12	0%	1709		
Nœuds	18	N1 à N18										
	Contrôle	es surfaci	iques : n	nagnéto	scopie (M	T) ou 1	ressuag	e (PT)				
Longi.	6000	L1 à L9	30	1.1	10% (St2) 0% (St1)	400	30	1	0%	0		
Cir.	10930	C1 à C7	10	1.2 2.12 2.22	10% (St2) 0% (St1)	600	10	2a	0%	0		
Cir. Viroles / Brides	4050	B1 à B4	8	1.2	10% (St2) 0% (St1)	200	8	2a	0%	0		
Piquages	1821	P1 à P3	12,7	6.1 4.1.1 4.2.1 a 4.2.1 b	1 x 100% 2 x 0%	250	12,7	15	0%	0		
Brides / Tubulures	1709	A1 à A10	5,54	6.1	0%	0	5,54	12	0%	0		

Longueurs de soudure soumises aux contrôles							
Type de contrôle CODAP EN 13445							
Contrôles surfaciques (MT/PT)	1 450 mm	0 mm					
Contrôles volumiques (UT/RT)	24 314 mm	23 089 mm					

REACTEUR SUR JUPE

Données générales						
Matériaux	13 CrMo 4-5 NF EN 10028-2					
Fluide de service	Gaz Groupe 1 densité 0,48					
Pression intérieure de calcul	38 bar					
Température de calcul	470°C					
Catégorie de risque	IV					
Coefficient de joint	1					

CODAP	
Catégorie de construction	A
Groupe de matériau	St.5.1

EN13445	
Groupe de matériau	5.1
Groupe de contrôle	1a

Élément	Contrainte nominale (MPa)			Coef. soudure	_	sseurs P (mm)	Épaisseurs EN13445 (mm)		
	$R_{p0,2}^{t}/1.5$	$R_{\rm m}/2.40$	Fluage	Soudure	calculée	commandée	calculée	commandée	
Jupe (a)	193.33	187.50		1.00			16	16.0	
Fond hémi. bas	112.00	187.50	137.50	1.00	34.89	37.0	34.89	37.0	
Virole 2299	108.67	183.33	137.50	1.00	71.89	74.0	71.89	74.0	
Virole 2000	108.67	183.33	137.50	1.00	71.89	74.0	71.89	74.0	
Virole 2150 bas	108.67	183.33	137.50	1.00	71.89	74.0	71.89	74.0	
Virole 2150 haut	108.67	183.33	137.50	1.00	71.89	74.0	71.89	74.0	
Fond hémi. haut	112.00	187.50	137.50	1.00	35.87	56.0	34.89	56.0	
Trou homme	112.00	187.50	137.50	sans	8.47	12.0	8.47	12.0	

Les appareils dimensionnés selon le CODAP ou l'EN13445 sont très semblables, cela provient du fait que les formules analytiques utilisées pour calculer les épaisseurs des éléments qui les composent sont identiques. Les origines des petites différences qui apparaissent sont explicitées ci dessous :

(a): Le CODAP ne possède pas de règle de dimensionnement des jupes de supportage

			CODAP					EN1	3445	
Soudure	L (mm)	Rep.	e (mm)	Туре	% ou Nb.	l (mm)	e (mm)	Туре	% ou Nb	l (mm)
		Contrôle	s volum	iques, ra	adio (R'	T) ultra	sons (U'	Γ)		
Longi.	8599	L1 à L4	74	1.1	100%	8599	74	1	100%	8599
Cir.	26289	C1 à C5	74/37	1.2.1	100%	26289	74/37	2a	100%	26289
Jupe	12849	C6	56	13	100%	12849	56	2a	100%	12849
Trou hom.	1596	TH1	12	4.1.1	100%	1596	12	15	100%	1596
Bride TH	1596	TH2	12	6.2.1	100%	1596	12	12	100%	1596
N. nœuds	8	N1 à N8				1600				1600
	Contr	ôles surfa	aciques,	magnét	oscopie	(MT) o	u ressua	age (PT))	
Longi.	8599	L1 à L4	74	1.1	100%	8599	74	1	10%	860
Cir.	26289	C1 à C5	74/37	1.2.1	100%	26289	74/37	2a	10%	2629
Jupe	12849	C6	56	13	0%	0	56	2a	10%	1285
Trou hom.	1596	TH1	12	4.1.1	100%	1596	12	15	10%	160
Bride TH	1596	TH2	12	6.2.1	100%	1596	12	12	10%	160
N. nœuds	8	N1 à N8								

Longueurs de soudure soumises aux contrôles							
Type de contrôle CODAP EN 13445							
Contrôles surfaciques (MT/PT)	38 080 mm	8 582 mm					
Contrôles volumiques (UT/RT)	52 529 mm	52 529 mm					

CONCLUSIONS

Ces premiers travaux, conduits de septembre 2003 à juin 2004, ont mis en évidence un ensemble de constats dont certains devront être approfondis dans une deuxième étape.

Tout d'abord, comme on pouvait s'y attendre, il se confirme que la compréhension détaillée du nouveau texte EN 13445 n'est pas immédiate : toutes les règles devant être appliquées à un cas donné, sont dispersées dans les différentes parties du texte, dans un ordre peu habituel pour une application industrielle. Il semble donc indispensable de préparer à court terme un guide de lecture.

Un certain nombre d'erreurs et de manques ont aussi été constatés, qui ont été transmis au bureau d'aide pour suite à donner.

Sur le fond, en terme de dimensionnement, hors fatigue, l'EN 13445 donne des résultats comparables au CODAP, et même dans certains cas favorables. La validité de certaines formulations de calcul reste toutefois à vérifier (par exemple liaison cône-cylindre côté petite base).

En matière de contrôles, l'étude semble montrer, pour les appareils étudiés et encore une fois hors fatigue, que l'étendue des contôles est plus faible dans l'EN 13445 que dans le CODAP, ce qui va à l'encontre de l'idée généralement admise; l'écart est principalement dû aux contrôles surfaciques, particulièrement réduits dans l'EN 13445 y-compris pour les appareils les plus dangereux; pour les appareils les plus simples cet écart provient également des contrôles volumiques.

Sans remettre en cause les fondements de l'EN 13445, il convient toutefois de s'interroger, en terme de sécurité, sur son application « à la lettre » en France, compte tenu des pratiques industrielles actuelles.

Il paraît donc indispensable d'approfondir cette question, de confronter les résultats obtenus aux pratiques de nos confrères européens, de façon à faire évoluer le texte sur les points jugés les plus sensibles.

Du point de vue économique, les travaux de comparaison doivent être poursuivis de manière à prendre à compte la totalité des paramètres, sans oublier la grande inconnue de l'EN 13445 : le plan d'inspection. En outre, la définition des contrôles suivant EN 13445 est relativement complexe, ce qui nécessite de consacrer davantage de temps au chiffrage d'un appareil, si on veut optimiser l'application de la norme.

A suivre ...